top of page
MRI Scan Image

Research 

 

This section contains a comprehensive collection of the literature that informed our meta-analysis and guided the development of the Neuroplasticity Rehabilitation Index (NRI) system. It also includes additional resources we curated to support further learning and exploration in the fields of neuroplasticity, BDNF, and traumatic brain injury.

BDNF - Inconsistencies for poster version (6).png

In our early research on traumatic brain injuries (TBIs) and BDNF (Brain-Derived Neurotrophic Factor), we quickly noticed a major gap: while many studies explored individual variables like exercise, age, or sex, few drew connections between them, and even fewer offered consistent, generalizable conclusions. The data was scattered, often conflicting, and lacked a unified framework for clinical interpretation.

This highlighted an urgent need for a meta-analysis—a comprehensive approach to synthesize trends across multiple studies and quantify how key physiological factors influence BDNF levels. Our infographic was created to fill this gap by visualizing the core findings of our meta-analysis and clearly communicating how these insights can drive better recovery models for TBI patients.

Sources used: 1) Naegelin, Y., Dingsdale, H., Säuberli, K., Schädelin, S., Kappos, L., & Barde, Y. (2018d). Measuring and validating the levels of Brain-Derived neurotrophic factor in human serum. eNeuro, 5(2), ENEURO.0419-17.2018. https://doi.org/10.1523/eneuro.0419-17.2018   This study presents a validated methodology for quantifying BDNF in human serum using ELISA. It ensures reproducibility and accuracy, setting a foundation for clinical and research applications involving BDNF measurement. ​ Jiao, S., Shen, L., Zhu, C., Bu, X., Liu, Y., Liu, C., Yao, X., Zhang, L., Zhou, H., Walker, D. G., Tan, J., Götz, J., Zhou, X., & Wang, Y. (2016). Brain-derived neurotrophic factor protects against tau-related neurodegeneration of Alzheimer’s disease. Translational Psychiatry, 6(10), e907. https://doi.org/10.1038/tp.2016.186   This paper investigates the neuroprotective effects of BDNF on tau pathology associated with Alzheimer's disease. It demonstrates that BDNF can reduce tau phosphorylation and improve neuronal survival. ​ Liao, G., Xu, H., Shumate, J., Scampavia, L., Spicer, T., & Xu, B. (2023). High throughput assay for compounds that boost BDNF expression in neurons. SLAS Discovery, 28(3), 88-94. https://doi.org/10.1016/j.slasd.2023.02.005   The authors develop a high-throughput screening assay to identify compounds that enhance BDNF expression in neurons. This method facilitates drug discovery for neurological disorders involving BDNF dysregulation. ​ 2) Taha, M. A., Al-Maqati, T. N., Alnaam, Y. A., Alharbi, S. S., Khaneen, R., Almutairi, H., & Al-Harbi, M. (2022). The Association between Brain-Derived Neurotrophic Factor (BDNF) Protein Level and Body Mass Index. Medicina, 59(1), 99. https://doi.org/10.3390/medicina59010099   This research explores the relationship between circulating BDNF protein levels and body mass index (BMI). Findings suggest a possible link between metabolic health and neurotrophic support. ​ Steinhäuser, J. L., King, J. A., Tam, F. I., Seidel, M., Biemann, R., Wronski, M., Geisler, D., Roessner, V., & Ehrlich, S. (2021). Is serum BDNF altered in Acute, Short- and Long-Term recovered restrictive type anorexia nervosa? Nutrients, 13(2), 432. https://doi.org/10.3390/nu13020432   This paper examines serum BDNF concentrations in patients with anorexia nervosa during acute illness, short-term, and long-term recovery. It discusses BDNF's potential as a biomarker for nutritional status and recovery progress. ​ ​ 3) Maffioletti, E., Zanardini, R., Gennarelli, M., & Bocchio-Chiavetto, L. (2014). [Letter to the editor] Influence of clotting duration on Brain-Derived Neurotrophic Factor (BDNF) dosage in serum. BioTechniques, 57(3), 111–114. https://doi.org/10.2144/000114204   This short communication evaluates how clotting time affects BDNF measurement in serum. It highlights pre-analytical variables that can significantly alter BDNF assay results. ​ Amadio, P., Sandrini, L., Ieraci, A., Tremoli, E., & Barbieri, S. S. (2017). Effect of clotting duration and temperature on BDNF measurement in human serum. International Journal of Molecular Sciences, 18(9), 1987. https://doi.org/10.3390/ijms18091987   This study analyzes the influence of both clotting duration and temperature on the stability of BDNF in serum. It provides methodological recommendations for improving assay  ​ ​4,5,6) Naegelin, Y., Dingsdale, H., Säuberli, K., Schädelin, S., Kappos, L., & Barde, Y. (2018d). Measuring and validating the levels of Brain-Derived neurotrophic factor in human serum. eNeuro, 5(2), ENEURO.0419-17.2018. https://doi.org/10.1523/eneuro.0419-17.2018   This study presents a validated methodology for quantifying BDNF in human serum using ELISA. It ensures reproducibility and accuracy, setting a foundation for clinical and research applications involving BDNF measurement. ​ ​7) Ou, Y. A., Byrne, L. M., Rodrigues, F. B., Tortelli, R., Johnson, E. B., Foiani, M. S., Arridge, M., Vita, E. D., Scahill, R. I., Heslegrave, A., Zetterberg, H., & Wild, E. J. (2021). Brain-derived neurotrophic factor in cerebrospinal fluid and plasma is not a biomarker for Huntington’s disease. Scientific Reports, 11, 3481. https://doi.org/10.1038/s41598-021-83000-x The study assesses whether BDNF levels in cerebrospinal fluid and plasma can serve as biomarkers for Huntington’s disease. Results show no significant difference in BDNF levels between patients and controls. ​ 8)Balietti, M., Giuli, C., & Conti, F. (2018). Peripheral Blood Brain-Derived neurotrophic factor as a biomarker of Alzheimer’s disease: Are there methodological biases? Molecular Neurobiology, 55(8), 6661–6672. https://doi.org/10.1007/s12035-017-0866-y  This review critiques potential biases in using peripheral BDNF as a biomarker for Alzheimer’s disease. It emphasizes the need for standardized protocols in BDNF measurement. ​ 9) Harris, A. P., Lennen, R. J., Brydges, N. M., Jansen, M. A., Pernet, C. R., Whalley, H. C., Marshall, I., Baker, S., Basso, A. M., Day, M., Holmes, M. C., & Hall, J. (2016). The role of brain‐derived neurotrophic factor in learned fear processing: An awake rat fMRI study. Genes, Brain, and Behavior, 15(2), 221. https://doi.org/10.1111/gbb.12277   Using fMRI in awake rats, this study links BDNF function to neural mechanisms of fear learning. It adds to the understanding of how neurotrophic factors influence emotional memory. ​ Elfving, B., Plougmann, P. H., Müller, H. K., Mathé, A. A., Rosenberg, R., & Wegener, G. (2010). Inverse correlation of brain and blood BDNF levels in a genetic rat model of depression. International Journal of Neuropsychopharmacology, 13(5), 563-572. https://doi.org/10.1017/S1461145709990721  This research reveals an inverse relationship between brain and blood BDNF levels in a rat model of depression. It suggests that peripheral BDNF may not always reflect central nervous  ​ Rault, J., Lawrence, A., & Ralph, C. (2018). Brain-derived neurotrophic factor in serum as an animal welfare indicator of environmental enrichment in pigs. Domestic Animal Endocrinology, 65, 67-70. https://doi.org/10.1016/j.domaniend.2018.05.007  This study uses serum BDNF as a biomarker for environmental enrichment in pigs, a model for animal welfare. Elevated BDNF levels were associated with improved environmental conditions. ​ 10) Liu, W., Wang, X., Wang, G., & Han, F. (2020). Brain-Derived Neurotrophic Factor and Its Potential Therapeutic Role in Stroke Comorbidities. Neural Plasticity, 2020(1), 1969482. https://doi.org/10.1155/2020/1969482  This review discusses BDNF’s therapeutic potential in stroke-related conditions. It highlights how BDNF modulates neuroinflammation, neurogenesis, and cognitive recovery post-stroke. ​ 11) Polacchini, A., Metelli, G., Francavilla, R., Baj, G., Florean, M., Mascaretti, L. G., & Tongiorgi, E. (2015). A method for reproducible measurements of serum BDNF: comparison of the performance of six commercial assays. Scientific Reports, 5(1). https://doi.org/10.1038/srep17989  This study compares six commercial ELISA kits for BDNF measurement in human serum. It recommends the most reliable assays and underlines the importance of assay selection for reproducible research. ​

Resources used throughout the making of our project 1) Pisani, A., Paciello, F., Vecchio, V. D., Malesci, R., Corso, E. D., Cantone, E., & Fetoni, A. R. (2023). The Role of BDNF as a Biomarker in Cognitive and Sensory Neurodegeneration. Journal of Personalized Medicine, 13(4), 652. https://doi.org/10.3390/jpm13040652 This review highlights the significance of Brain-Derived Neurotrophic Factor (BDNF) as a biomarker in cognitive and sensory neurodegenerative diseases. BDNF plays a crucial role in neuronal maintenance, survival, and synaptic plasticity. The authors discuss its potential utility for early diagnosis and as a therapeutic target in neurodegenerative conditions. 2) Polacchini, A., Metelli, G., Francavilla, R., Baj, G., Florean, M., Mascaretti, L. G., & Tongiorgi, E. (2015). A method for reproducible measurements of serum BDNF: Comparison of the performance of six commercial assays. Scientific Reports, 5, 17989. https://doi.org/10.1038/srep17989 This study compares six commercial assays for measuring serum BDNF levels to identify a reproducible and reliable method. The findings emphasize the importance of assay selection in BDNF research and its implications for clinical studies. 3) Lang, U. E., Hellweg, R., & Gallinat, J. (2004). BDNF Serum Concentrations in Healthy Volunteers are Associated with Depression-Related Personality Traits. Neuropsychopharmacology, 29(4), 795-798. https://doi.org/10.1038/sj.npp.1300382 The researchers investigate the association between serum BDNF concentrations and personality traits related to depression in healthy individuals. They found that lower BDNF levels correlate with higher scores in depression-related traits, suggesting BDNF's role in mood regulation. 4) Failla, M. D., Conley, Y. P., & Wagner, A. K. (2015). Brain-Derived Neurotrophic Factor (BDNF) in Traumatic Brain Injury–Related Mortality. Neurorehabilitation and Neural Repair, 30(1), 83–93. https://doi.org/10.1177/1545968315586465 This study examines the relationship between BDNF levels and mortality in patients with traumatic brain injury (TBI). The authors suggest that BDNF could serve as a prognostic biomarker for TBI outcomes. DSouza, A. A., Kulkarni, P., Ferris, C. F., Amiji, M. M., & Bleier, B. S. (2024). Mild repetitive TBI reduces brain-derived neurotrophic factor (BDNF) in the substantia nigra and hippocampus: A preclinical model for testing BDNF-targeted therapeutics. Experimental Neurology, 374, 114696. https://doi.org/10.1016/j.expneurol.2024.114696 The authors present a preclinical model demonstrating that mild repetitive TBI leads to reduced BDNF levels in the substantia nigra and hippocampus. This model can be utilized to test BDNF-targeted therapeutic interventions. McAllister, T. W., Tyler, A. L., Flashman, L. A., Rhodes, C. H., McDonald, B. C., Saykin, A. J., & Yan, H. (2012). BDNF Val66Met polymorphism influences recovery from mild traumatic brain injury. Brain, 135(Pt 3), 868–878. https://doi.org/10.1093/brain/aws207 This research explores how the BDNF Val66Met polymorphism affects recovery outcomes in individuals with mild TBI. The study suggests that genetic variations in BDNF can influence neural recovery processes. Ying, Z., Roy, R. R., Edgerton, V. R., & Gomez-Pinilla, F. (2003). Neurotrophins and neuroplasticity in the context of traumatic brain injury. Journal of Neurotrauma, 20(10), 883–892. https://doi.org/10.1089/089771503321165392 The study discusses the role of neurotrophins, including BDNF, in promoting neuroplasticity following TBI. It highlights the potential therapeutic applications of neurotrophins in enhancing neural repair mechanisms. Churchill, N. W., Hutchison, M. G., Graham, S. J., & Schweizer, T. A. (2018). BDNF is associated with neuroimaging biomarkers of brain injury severity in adolescents with mild traumatic brain injury. Brain Injury, 32(4), 477–485. https://doi.org/10.1080/02699052.2018.1441926 This study correlates serum BDNF levels with neuroimaging biomarkers to assess brain injury severity in adolescents with mild TBI. The findings support BDNF's potential as a biomarker for assessing injury severity. *Lower BDNF prior to injury is associated with worse outcomes post injury Korley, F. K., Diaz-Arrastia, R., B Wu, A. H., Yue, J. K., Manley, G. T., Sair, H. I., Eyk, J. V., Everett, A. D., Okonkwo, D. O., Valadka, A. B., Gordon, W. A., Maas, A. I., Mukherjee, P., Yuh, E. L., Lingsma, H. F., Puccio, A. M., & Schnyer, D. M. (2016). Circulating Brain-Derived Neurotrophic Factor Has Diagnostic and Prognostic Value in Traumatic Brain Injury. Journal of Neurotrauma, 33(2), 215. https://doi.org/10.1089/neu.2015.3949 The authors evaluate the diagnostic and prognostic value of circulating BDNF levels in TBI patients. They conclude that BDNF measurements can aid in TBI diagnosis and prognosis. High, W. M., Brunner, R., Wright, D. W., & McAllister, T. (n.d.). Brain-derived neurotrophic factor (BDNF) in traumatic brain injury: Related to mortality and recovery. Model Systems Knowledge Translation Center (MSKTC). https://msktc.org/tbi/publications/brain-derived-neurotrophic-factor-bdnf-traumatic-brain-injury-related-mortality This resource discusses the relationship between BDNF levels, mortality, and recovery outcomes in TBI patients, emphasizing BDNF's potential as a therapeutic target. Turchan, A., Fahmi, A., Kurniawan, A., Bajamal, A. H., Fauzi, A., & Apriawan, T. (2022). The change of serum and CSF BDNF level as a prognosis predictor in traumatic brain injury cases: A systematic review. Surgical Neurology International, 13, 250. https://doi.org/10.25259/SNI_1245_2021 This systematic review assesses the prognostic value of serum and cerebrospinal fluid BDNF levels in TBI patients, suggesting that BDNF could serve as a predictor of clinical outcomes. Failla, M. D., Conley, Y. P., & Wagner, A. K. (2016). Brain-Derived Neurotrophic Factor (BDNF) in Traumatic Brain Injury–Related Mortality. Neurorehabilitation and Neural Repair. https://doi.org/10.1177/1545968315586465 This study examines the relationship between BDNF levels and mortality in patients with traumatic brain injury (TBI). The authors suggest that BDNF could serve as a prognostic biomarker for TBI outcomes. Mori, K., Yamamoto, T., Nakao, Y., Shibasaki, K., Yamada, K., & Katayama, Y. (2016). Serum BDNF concentrations as a predictive marker for functional outcome after traumatic brain injury. Stroke, 47(3), 733–739. https://doi.org/10.1161/STROKEAHA.115.012383 The study investigates the potential of serum BDNF concentrations to predict functional outcomes in TBI patients, proposing BDNF as a valuable prognostic marker. Giesler, L. P., Mychasiuk, R., Shultz, S. R., & McDonald, S. J. (2024). BDNF: New Views of an Old Player in Traumatic Brain Injury. The Neuroscientist. https://doi.org/10.1177/10738584231164918 5) Polyakova, M., Schlögl, H., Sacher, J., Kaiser, J., Stumvoll, M., Kratzsch, J., & Schroeter, M. L. (2017). Stability of BDNF in Human Samples Stored Up to 6 Months and Correlations of Serum and EDTA-Plasma Concentrations. International Journal of Molecular Sciences, 18(6), 1189. https://doi.org/10.3390/ijms18061189 This study evaluates the stability of Brain-Derived Neurotrophic Factor (BDNF) in human serum and EDTA-plasma samples under various storage conditions, including room temperature, repeated freeze-thaw cycles, and long-term storage at -80°C for up to six months. The findings indicate that BDNF levels remain stable in both serum and plasma under these conditions, with serum demonstrating higher reliability. The authors recommend favoring serum over EDTA-plasma for future assessments of peripheral BDNF concentrations. 7) Naegelin, Y., Dingsdale, H., Säuberli, K., Schädelin, S., Kappos, L., & Barde, Y. (2018). Measuring and validating the levels of Brain-Derived neurotrophic factor in human serum. eNeuro, 5(2), ENEURO.0419-17.2018. https://doi.org/10.1523/eneuro.0419-17.2018 This study focuses on the measurement and validation of BDNF levels in human serum, emphasizing the importance of standardized protocols to ensure accuracy and reproducibility in BDNF quantification. Failla, M. D., Conley, Y. P., & Wagner, A. K. (2015). Brain-Derived Neurotrophic Factor (BDNF) in Traumatic Brain Injury–Related Mortality. Neurorehabilitation and Neural Repair, 30(1), 83–93. https://doi.org/10.1177/1545968315586465 Kronenberg, G., Gertz, K., Schöner, J., Bertram, L., Liman, T., Steinhagen-Thiessen, E., Demuth, I., Endres, M., & Hellweg, R. (2021). BDNF serum concentrations in 2053 participants of the Berlin Aging Study II. Neurobiology of Aging, 101, 221–223. https://doi.org/10.1016/j.neurobiolaging.2021.01.020 This research presents data on serum BDNF concentrations from 2053 participants in the Berlin Aging Study II, providing insights into the distribution and potential age-related changes of BDNF levels in a large cohort. Zotey, V., Andhale, A., Shegekar, T., & Juganavar, A. (2023). Adaptive Neuroplasticity in Brain injury recovery: Strategies and Insights. Cureus. https://doi.org/10.7759/cureus.45873 This article discusses adaptive neuroplasticity mechanisms in brain injury recovery, offering strategies and insights into therapeutic approaches that leverage neuroplasticity for improved outcomes. Kuceyeski, A., Shah, S., Dyke, J., Bickel, S., Abdelnour, F., Schiff, N., Voss, H., & Raj, A. (2016). The application of a mathematical model linking structural and functional connectomes in severe brain injury. NeuroImage: Clinical, 11, 635-647. https://doi.org/10.1016/j.nicl.2016.04.006 The authors present a mathematical model that links structural and functional connectomes in cases of severe brain injury, providing a framework for understanding the complex relationships between brain structure and function post-injury. Rodrigues, A. C., Loureiro, M. A., & Caramelli, P. (2010). Musical training, neuroplasticity and cognition. Dementia & Neuropsychologia, 4(4), 277. https://doi.org/10.1590/S1980-57642010DN40400005 This study explores the effects of musical training on neuroplasticity and cognition, suggesting that musical practice can induce structural and functional changes in the brain that enhance cognitive abilities. MSEd, K. C. (2024, May 17). How neuroplasticity works. Verywell Mind. https://www.verywellmind.com/what-is-brain-plasticity-2794886#:~:text=Functional%20plasticity%20is%20the%20brain%27s,as%20a%20result%20of%20learning This article provides an overview of neuroplasticity, explaining how the brain adapts and reorganizes itself in response to learning, experience, and injury, highlighting the mechanisms underlying these changes. Kvistad, C. E., Kråkenes, T., Gavasso, S., & Bø, L. (2024). Neural regeneration in the human central nervous system—From understanding the underlying mechanisms to developing treatments. Where do we stand today? Frontiers in Neurology, 15, 1398089. https://doi.org/10.3389/fneur.2024.1398089 This review discusses current understanding of neural regeneration mechanisms in the human central nervous system and evaluates the progress in developing treatments aimed at promoting neural repair and recovery. Luszawski, C. A., Plourde, V., Sick, S. R., Galarneau, J., Eliason, P. H., Brooks, B. L., Mrazik, M., Debert, C. T., Lebrun, C., Babul, S., Hagel, B. E., Dukelow, S. P., Schneider, K. J., Emery, C. A., & Yeates, K. O. (2023). Psychosocial factors associated with time to recovery after concussion in adolescent ice hockey players. Biological Psychiatry. Retrieved from https://www.biologicalpsychiatryjournal.com/article/S0006-3223(17)30837-5/abstract This study examines the psychosocial factors that influence recovery time following concussion in adolescent ice hockey players, identifying variables that may affect the duration and effectiveness of the recovery process. Stanford Summer Institutes: Topics in Neuroscience. This course offers an in-depth exploration of various neuroscience topics, providing participants with a comprehensive understanding of the field through lectures, discussions, and hands-on activities. Brown University Library Guides: Neuroscience Data. This resource provides access to a wide range of neuroscience data sets and tools, supporting research and education in the field by facilitating data-driven investigations and analyses. MIT (2023, February 17). Major MIT Research Endeavors Unlock Secrets of the Brain. MIT For a Better World. This article highlights significant research initiatives at MIT aimed at uncovering the mysteries of the brain, showcasing interdisciplinary efforts and breakthroughs in neuroscience. MIT Department of Brain and Cognitive Sciences. The department's website offers information on academic programs, research activities, and resources related to brain and cognitive sciences, reflecting MIT's commitment to advancing understanding in these areas. Black, D., Vachha, B., Mian, A., Faro, S., Maheshwari, M., Sair, H., Petrella, J., Pillai, J., & Welker, K. (2017). American Society of Functional Neuroradiology–recommended fMRI paradigm algorithms for presurgical language assessment. AJNR: American Journal of Neuroradiology, 38(10), E65. https://doi.org/10.3174/ajnr.A5346 This paper presents standardized functional MRI (fMRI) paradigm algorithms recommended by the American Society of Functional Neuroradiology for presurgical language assessment, aiming to improve the reliability and consistency of language mapping in clinical settings. FMRI Paradigms | ASFNR. (n.d.). ASFNR. https://www.asfnr.org/paradigms This resource provides information on various fMRI paradigms used in functional neuroimaging, serving as a guide for researchers and clinicians in selecting appropriate protocols for their studies. Redcastleadmin. (n.d.). Brain Injury Recovery Statistics: What the data say. NeuLife. https://neuliferehab.com/brain-injury-recovery-statistics/#:~:text=Recovery%20rates%20for%20mild%20traumatic,within%20three%20months%20post%2Dinjury This article presents statistical data on brain injury recovery, offering insights into recovery rates, factors influencing outcomes, and the effectiveness of various rehabilitation approaches. Fong, A., PhD, & Fong, A., PhD. (2018, May 23). Neuroplasticity treatment: How it can help you recover from a brain injury. https://www.cognitivefxusa.com/blog/neuroplasticity-treatment-for-concussions This piece discusses how treatments leveraging neuroplasticity can aid in brain injury recovery, highlighting therapeutic strategies that promote brain reorganization and functional improvement. Gulati, A., Srinivasan, B., Hunter, R., & Flood, T. R. (2010). Penetrating knife injury to the frontal lobe – a case report. Annals of The Royal College of Surgeons of England, 92(6), e41. https://doi.org/10.1308/147870810X12699662981672 This case report details a penetrating knife injury to the frontal lobe, discussing the clinical presentation, surgical intervention, and patient outcomes, contributing to the understanding of managing such traumatic injuries. Davis, S., Gupta, N., Samudra, M., & Javadekar, A. (2021). A case of frontal lobe syndrome. Industrial Psychiatry Journal, 30(Suppl 1), S360. https://doi.org/10.4103/0972-6748.328859 This case report details a patient diagnosed with frontal lobe syndrome, emphasizing the neuropsychiatric manifestations associated with frontal lobe damage. The authors discuss the patient's symptoms, diagnostic process, and therapeutic interventions, highlighting the critical role of the frontal lobes in regulating behavior, personality, and executive functions. The study underscores the importance of a multidisciplinary approach in managing such cases to address the complex interplay of cognitive and behavioral symptoms. Loring, D. W., & Meador, K. J. (2006). Case studies of focal prefrontal lesions in Man. In The Frontal Lobes : Development, Function and Pathology (p. 163). Cambridge University Press. https://med.emory.edu/departments/neurology/_documents/frontal_lobe_case_studies_loring_meador.pdf In this book chapter, Loring and Meador present detailed case studies of individuals with focal prefrontal cortex lesions. They explore the diverse cognitive and behavioral deficits resulting from such lesions, including impairments in decision-making, social behavior, and executive functions. The authors provide insights into the localization of specific functions within the prefrontal cortex and discuss the implications for understanding the broader role of this brain region in human cognition and behavior. Wilderson, L. R. (2024, April 29). A case report of parietal lobe glioblastoma and Post-Surgical neurosensory deficits. Published in Clinical Insights in Eyecare. https://clinicalinsightsineyecare.scholasticahq.com/article/94830-a-case-report-of-parietal-lobe-glioblastoma-and-post-surgical-neurosensory-deficits This case report examines a patient diagnosed with glioblastoma in the parietal lobe, focusing on the neurosensory deficits experienced post-surgery. The author details the patient's visual and spatial impairments, discusses the surgical approach taken, and evaluates the outcomes. The report emphasizes the challenges in preserving neurosensory functions when operating in the parietal region and highlights strategies for rehabilitation and management of post-operative deficits. Ambron, E., Piretti, L., Lunardelli, A., & Coslett, H. B. (2018). Closing-in Behavior and Parietal Lobe Deficits: Three Single Cases Exhibiting Different Manifestations of the Same Behavior. Frontiers in Psychology, 9, 1617. https://doi.org/10.3389/fpsyg.2018.01617 This study investigates "closing-in" behavior—a phenomenon where patients reproduce drawings or writings unusually close to or on top of the model—in individuals with parietal lobe damage. Through three single-case studies, the authors illustrate varying manifestations of this behavior, suggesting that such patterns may be linked to deficits in spatial processing and attention associated with parietal lobe dysfunction. The findings contribute to understanding the neuropsychological mechanisms underlying closing-in behavior and its association with parietal lobe lesions. Case 245 --Neuropathology case. (n.d.). https://path.upmc.edu/cases/case245.html This neuropathology case study presents a 15-year-old girl who experienced seizures, leading to the discovery of a lesion in the left parietal lobe initially suspected to be a meningioma. Surgical resection and subsequent histological examination revealed a lesion composed of spindle and oval-shaped cells with eosinophilic cytoplasm and scattered giant cells, some exhibiting emperipolesis. Immunohistochemical analysis showed labeling with CD68, MAC387, and S-100 protein, but not with CD1a antibodies. Electron microscopy did not reveal Birbeck granules, suggesting a diagnosis other than Langerhans cell histiocytosis. The case underscores the importance of comprehensive histopathological and immunohistochemical evaluation in accurately diagnosing parietal lobe lesions presenting with seizure activity. Battelli, L., 1, Cavanagh, P., Intriligator, J., Tramo, M. J., He´Naff, M.-A., Miche`L, F., Barton, J. J. S., Department of Psychology, Department of Neurology and Opthalmology, Department of Neurology, & INSERM Unite´ 280. (2001). Unilateral right parietal damage leads to bilateral deficit for High-Level motion. Neuron, 32, 985–995. https://www.visionlab.harvard.edu/members/Patrick/PDF.files/2001pdfs/NEURON.Battelli.pdf This study explores how damage to the right parietal lobe can result in bilateral impairment in high-level motion perception. Patients with unilateral right parietal lesions exhibited deficits in tasks involving attentive tracking and visual motion processing. The findings suggest that the right parietal cortex is dominant for distributing attentional resources across both visual fields, and its disruption compromises the integration of motion-related information bilaterally. Brain Injury Association of America. (2020, April 22). Rod shares his story - Brain Injury Association of America. https://biausa.org/brain-injury/community/personal-stories/rod-shares-his-story This is a personal account from Rod, who suffered a TBI after being shot in the head with a BB gun. It chronicles his emergency treatment, long recovery process, and challenges with reintegration into normal life. The story illustrates the real-world impact of TBIs on cognition, emotional control, and social reintegration—serving as a humanizing counterpoint to clinical research. Burgess, K. (2024, September 21). Surgeons map tumour patient’s brain to preserve his chess skills. The Times. https://www.thetimes.com/uk/science/article/surgeons-map-tumour-patients-brain-to-preserve-his-chess-skills-08jtrqx7n This article describes a neurosurgical breakthrough in which a patient undergoing glioma resection had functional brain mapping done to preserve chess-specific cognitive function. The neurosurgeons identified and avoided regions activated during chess problem-solving. It illustrates the precision of presurgical cortical mapping techniques and the preservation of highly individualized brain functions. Macaskill, J. (1945). A CASE OF OCCIPITAL LOBE INJURY. The British Journal of Ophthalmology, 29(12), 626. https://pmc.ncbi.nlm.nih.gov/articles/PMC512175/ An early case study on a patient with trauma to the occipital lobe, highlighting resulting visual impairments and the evolution of understanding cortical contributions to vision. The case supports foundational neuroanatomical knowledge that the occipital lobe is essential for visual processing, with lesion-induced phenomena such as visual field deficits and visual hallucinations. Paradowski, B., Kowalczyk, E., Chojdak-Łukasiewicz, J., Loster-Niewińska, A., & Służewska-Niedźwiedź, M. (2013). Three Cases with Visual Hallucinations following Combined Ocular and Occipital Damage. Case Reports in Medicine, 2013(1), 450725. https://doi.org/10.1155/2013/450725 This paper presents three clinical cases where patients experienced complex visual hallucinations following concurrent damage to the eyes and occipital lobes. The authors argue that such hallucinations likely result from deafferentation and cortical hyperexcitability, especially in the visual cortex. These cases support theories of release hallucinations such as Charles Bonnet Syndrome and show how occipital-cortical disruptions can generate vivid perceptual disturbances. Paradowski, B., Kowalczyk, E., Chojdak-Łukasiewicz, J., Loster-Niewińska, A., & Służewska-Niedźwiedź, M. (2013). Three Cases with Visual Hallucinations following Combined Ocular and Occipital Damage. Case Reports in Medicine, 2013, 1–5. https://doi.org/10.1155/2013/450725 Tubi, M. A., Lutkenhoff, E., Blanco, M. B., McArthur, D., Villablanca, P., Ellingson, B., Diaz-Arrastia, R., Ness, P. V., Real, C., Shrestha, V., Jerome Engel, J., Vespa, P. M., Group Investigators, R. S., Agoston, D., Au, A., Bell, M. J., Bleck, T., Branch, C., Blanco, M. B., . . . Zimmermann, L. (2018). Early seizures and temporal lobe trauma predict post-traumatic epilepsy: A longitudinal study. Neurobiology of Disease, 123, 115. https://doi.org/10.1016/j.nbd.2018.05.014 This longitudinal study investigates predictors of post-traumatic epilepsy (PTE) in TBI patients. It found that early seizures and temporal lobe damage significantly increased the risk of developing epilepsy. Neuroimaging and EEG data supported the idea that temporal lobe vulnerability contributes to epileptogenesis. The study informs clinical surveillance strategies for PTE risk stratification. Jerger, J., Lovering, L., & Wertz, M. (1972). Auditory Disorder Following Bilateral Temporal Lobe Insult: Report of a Case. https://doi.org/10.1044/jshd.3704.523 This early case report details the rare phenomenon of cortical deafness following bilateral temporal lobe injury. The patient retained peripheral hearing function but could not perceive or comprehend sound. This study was pivotal in establishing the role of superior temporal gyri and primary auditory cortex in auditory perception, distinct from subcortical pathways. Mioni, G., Grondin, S., & Stablum, F. (2014). Temporal dysfunction in traumatic brain injury patients: Primary or secondary impairment? Frontiers in Human Neuroscience, 8, 269. https://doi.org/10.3389/fnhum.2014.00269 This study examines how TBI affects time perception. Using a battery of temporal judgment tasks, the authors found that TBI patients consistently under- or overestimated durations. They theorize that temporal dysfunction may arise both from direct cortical damage and secondary cognitive impairments (e.g., attention, working memory), particularly involving frontal and temporal circuits. Libretexts. (2021, August 23). 7.2: Derivation of Michaelis-Menten equation. Biology LibreTexts. https://bio.libretexts.org/Courses/Wheaton_College_Massachusetts/Principles_of_Biochemistry/07%3A_Enzymes_catalysis_and_kinetics/7.02%3A_Derivation_of_Michaelis-Menten_equation This educational resource walks through the step-by-step derivation of the Michaelis-Menten equation, the foundational kinetic model in enzymology. It explains the assumptions (steady state, excess substrate, etc.) and introduces key parameters like Vmax and Km. Understanding this model is essential for interpreting biomarker kinetics, including those like BDNF in serum. Gharahi, H., Garimella, H. T., Chen, Z. J., Gupta, R. K., & Przekwas, A. (2023). Mathematical model of mechanobiology of acute and repeated synaptic injury and systemic biomarker kinetics. Frontiers in Cellular Neuroscience, 17. https://doi.org/10.3389/fncel.2023.1007062 This study introduces a computational model that simulates the biological effects of acute and repeated synaptic injuries and the release dynamics of biomarkers like BDNF. It incorporates mechanical strain, blood-brain barrier integrity, and biomarker transport. The model helps predict how biomarkers evolve in circulation post-injury and may guide the timing of diagnostic sampling or therapeutic windows.

Factors influencing BDNF levels Age) Katoh-Semba, R., Wakako, R., Komori, T., Shigemi, H., Miyazaki, N., Ito, H., Kumagai, T., Tsuzuki, M., Shigemi, K., Yoshida, F., & Nakayama, A. (2007). Age-related changes in BDNF protein levels in human serum: differences between autism cases and normal controls. International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience, 25(6), 367–372. https://doi.org/10.1016/j.ijdevneu.2007.07.002 BDNF levels in human serum decrease with age. Children with autism show different patterns, suggesting altered brain development. Zuccato, C., & Cattaneo, E. (2009). Brain-derived neurotrophic factor in neurodegenerative diseases. Nature reviews. Neurology, 5(6), 311–322. https://doi.org/10.1038/nrneurol.2009.54 Lower BDNF levels are linked to neurodegenerative diseases like Huntington’s and Alzheimer’s. Aging worsens this decline. Tapia-Arancibia, L., Aliaga, E., Silhol, M., & Arancibia, S. (2008). New insights into brain BDNF function in normal aging and Alzheimer disease. Brain research reviews, 59(1), 201–220. https://doi.org/10.1016/j.brainresrev.2008.07.007 Aging reduces BDNF expression in the brain. The drop is greater in people with Alzheimer’s, contributing to cognitive decline. Erickson, K. I., Prakash, R. S., Voss, M. W., Chaddock, L., Heo, S., McLaren, M., Pence, B. D., Martin, S. A., Vieira, V. J., Woods, J. A., McAuley, E., & Kramer, A. F. (2010). Brain-derived neurotrophic factor is associated with age-related decline in hippocampal volume. The Journal of neuroscience : the official journal of the Society for Neuroscience, 30(15), 5368–5375. https://doi.org/10.1523/JNEUROSCI.6251-09.2010 BDNF levels predict hippocampal size and memory. As BDNF drops with age, the hippocampus shrinks and memory weakens. Sex) Scharfman, H. E., & MacLusky, N. J. (2006). The influence of gonadal hormones on neuronal excitability, seizures, and epilepsy in the female brain. Epilepsia, 47(Suppl 8), 46–58. https://doi.org/10.1111/j.1528-1167.2006.00672.x Gonadal hormones like estrogen affect neuronal activity and may influence BDNF expression in the female brain. Chan, J. P., Cordeira, J., Calderon, G. A., Iyer, L. K., Rios, M., & Sawchenko, P. E. (2014). Estrogen receptors mediate the brain-derived neurotrophic factor increase in the rat hippocampus following estradiol administration. Neuroscience, 261, 1–11. https://doi.org/10.1016/j.neuroscience.2013.12.033 Estrogen boosts BDNF levels in the hippocampus via estrogen receptors after hormone administration in rats. Galea, L. A. M., Leuner, B., & Slattery, D. A. (2014). Biological sex and circulating hormones influence cognitive and emotional behavior: Implications for depression and anxiety. Frontiers in Neuroendocrinology, 35(3), 303–319. https://doi.org/10.1016/j.yfrne.2014.03.008 Sex hormones influence mood and cognition through changes in BDNF and brain plasticity. Bimonte-Nelson, H. A., Francis, K. R., Umphlet, C. D., & Granholm, A. C. (2006). Progesterone and estrogen regulate BDNF mRNA and protein in the hippocampus of aged female rats. NeuroReport, 17(9), 885–890. https://doi.org/10.1097/01.wnr.0000221841.00502.d4 Estrogen and progesterone increase BDNF mRNA and protein in aged female rats’ hippocampi. Acute Exercise) Ferris, L. T., Williams, J. S., & Shen, C. L. (2007). The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Medicine and science in sports and exercise, 39(4), 728–734. https://doi.org/10.1249/mss.0b013e31802f04c7 A single session of exercise increases serum BDNF and improves short-term cognitive function. Knaepen, K., Goekint, M., Heyman, E. M., & Meeusen, R. (2010). Neuroplasticity - exercise-induced response of peripheral brain-derived neurotrophic factor: a systematic review of experimental studies in human subjects. Sports medicine (Auckland, N.Z.), 40(9), 765–801. https://doi.org/10.2165/11534530-000000000-00000 Exercise acutely raises BDNF levels across many studies, supporting its role in neuroplasticity. Winter, B., Breitenstein, C., Mooren, F. C., Voelker, K., Fobker, M., Lechtermann, A., Krueger, K., Fromme, A., Korsukewitz, C., Floel, A., & Knecht, S. (2007). High impact running improves learning. Neurobiology of learning and memory, 87(4), 597–609. https://doi.org/10.1016/j.nlm.2006.11.003 High-impact running leads to higher BDNF and better learning in healthy adults. Coelho, F. G., Vital, T. M., Stein, A. M., Arantes, F. J., Rueda, A. V., Camarini, R., Teodorov, E., & Santos-Galduróz, R. F. (2014). Acute aerobic exercise increases brain-derived neurotrophic factor levels in elderly with Alzheimer's disease. Journal of Alzheimer's disease : JAD, 39(2), 401–408. https://doi.org/10.3233/JAD-131073 Acute aerobic exercise raises BDNF levels in elderly individuals with Alzheimer’s disease. BMI) El-Gharbawy, A. H., Adler-Wailes, D. C., Mirch, M. C., Theim, K. R., Ranzenhofer, L. M., Tanofsky-Kraff, M., Yanovski, J. A., & Yanovski, S. Z. (2006). Serum brain-derived neurotrophic factor concentrations in children with obesity: Relation to body composition and cardiovascular risk factors. Pediatric Research, 59(3), 406–409. https://doi.org/10.1203/01.pdr.0000199909.63571.98 Children with obesity have lower BDNF levels. These levels relate to fat mass and heart risk factors. Lommatzsch, M., Zingler, D., Schuhbaeck, K., Schloetcke, K., Zingler, C., Schuff-Werner, P., & Virchow, J. C. (2005). The impact of age, weight and gender on BDNF levels in human platelets and plasma. Neurobiology of Aging, 26(1), 115–123. https://doi.org/10.1016/j.neurobiolaging.2004.03.002 Higher body weight is linked to lower BDNF in both plasma and platelets, alongside age and gender effects. Arentoft, A., Byrd, D., Monzones, J., Coulehan, K., Fuhrman, D., Rosario, A., Katz, M. J., & Brickman, A. M. (2009). Brain-derived neurotrophic factor is associated with body mass index and cognitive function in elderly African Americans. Journal of the American Geriatrics Society, 57(7), 1152–1157. https://doi.org/10.1111/j.1532-5415.2009.02316.x In elderly African Americans, higher BMI is associated with lower BDNF and worse cognitive performance.

META ANALYSIS-AGE Lang, U. E., Hellweg, R., & Gallinat, J. (2004). BDNF serum concentrations in healthy volunteers are associated with depression-related personality traits. Neuropsychopharmacology, 29(4), 795–798. https://doi.org/10.1038/sj.npp.1300382 Mueller, K., Arelin, K., Möller, H. E., Sacher, J., Kratzsch, J., Luck, T., Riedel-Heller, S., Villringer, A., & Schroeter, M. L. (2016). Serum BDNF correlates with connectivity in the (pre)motor hub in the aging human brain—A resting-state fMRI pilot study. Neurobiology of Aging, 38, 181-187. https://doi.org/10.1016/j.neurobiolaging.2015.11.003 Ziegenhorn, A. A., Schulte-Herbrüggen, O., Danker-Hopfe, H., Malbranc, M., Hartung, H. D., Anders, D., Lang, U. E., Steinhagen-Thiessen, E., Schaub, R. T., & Hellweg, R. (2007). Serum neurotrophins: A study on the time course and influencing factors in a large old age sample. Neurobiology of Aging, 28(9), 1436–1445. https://doi.org/10.1016/j.neurobiolaging.2006.06.011 Weinstein, G., Preis, S. R., Beiser, A. S., Kaess, B., Chen, T. C., Satizabal, C., Rahman, F., Benjamin, E. J., Vasan, R. S., & Seshadri, S. (2017). Clinical and environmental correlates of serum BDNF: A descriptive study with plausible implications for AD research. Current Alzheimer Research, 14(7), 722–730. https://doi.org/10.2174/1567205014666170203094520 Lang, U. E., Hellweg, R., Seifert, F., Schubert, F., & Gallinat, J. (2007). Correlation Between Serum Brain-Derived Neurotrophic Factor Level and An In Vivo Marker of Cortical Integrity. Biological Psychiatry, 62(5), 530-535. https://doi.org/10.1016/j.biopsych.2007.01.002 Bus, B. A., Molendijk, M. L., Penninx, B. J., Buitelaar, J. K., Kenis, G., Prickaerts, J., Elzinga, B. M., & Voshaar, R. C. (2011). Determinants of serum brain-derived neurotrophic factor. Psychoneuroendocrinology, 36(2), 228–239. https://doi.org/10.1016/j.psyneuen.2010.07.013 Naegelin, Y., Dingsdale, H., Säuberli, K., Schädelin, S., Kappos, L., & Barde, Y. A. (2018). Measuring and validating the levels of brain-derived neurotrophic factor in human serum. eNeuro, 5(2), ENEURO.0419-17.2018. https://doi.org/10.1523/ENEURO.0419-17.2018 Shimada, H., Makizako, H., Doi, T., Yoshida, D., Tsutsumimoto, K., Anan, Y., Uemura, K., Lee, S., Park, H., & Suzuki, T. (2014). A large, cross-sectional observational study of serum BDNF, cognitive function, and mild cognitive impairment in the elderly. Frontiers in Aging Neuroscience, 6, 69. https://doi.org/10.3389/fnagi.2014.00069 Collins, J. M., Hill, E., Bindoff, A., King, A. E., Alty, J., Summers, M. J., & Vickers, J. C. (2021). Association between components of cognitive reserve and serum BDNF in healthy older adults. Frontiers in Aging Neuroscience, 13, 725914. https://doi.org/10.3389/fnagi.2021.725914 Lee, J. G., Shin, B. S., You, Y. S., Kim, J. E., Yoon, S. W., Jeon, D. W., Baek, J. H., Park, S. W., & Kim, Y. H. (2009). Decreased serum brain-derived neurotrophic factor levels in elderly Koreans with dementia. Psychiatry Investigation, 6(4), 299–305. https://doi.org/10.4306/pi.2009.6.4.299 Erickson, K. I., Prakash, R. S., Voss, M. W., Chaddock, L., Heo, S., McLaren, M., Pence, B. D., Martin, S. A., Vieira, V. J., Woods, J. A., McAuley, E., & Kramer, A. F. (2010). Brain-derived neurotrophic factor is associated with age-related decline in hippocampal volume. Journal of Neuroscience, 30(15), 5368–5375. https://doi.org/10.1523/JNEUROSCI.6251-09.2010 Siuda, J., Patalong-Ogiewa, M., Żmuda, W., Targosz-Gajniak, M., Niewiadomska, E., Matuszek, I., Jędrzejowska-Szypułka, H., Lewin-Kowalik, J., & Rudzińska-Bar, M. (2017). Cognitive impairment and BDNF serum levels. Neurologia i Neurochirurgia Polska, 51(1), 24–32. https://doi.org/10.1016/j.pjnns.2016.10.001 Nettiksimmons, J., Simonsick, E. M., Harris, T., Satterfield, S., Rosano, C., & Yaffe, K. (2014). The associations between serum brain-derived neurotrophic factor, potential confounders, and cognitive decline: A longitudinal study. PLoS ONE, 9(3), e91339. https://doi.org/10.1371/journal.pone.0091339 Bus, B. A., Tendolkar, I., Franke, B., de Graaf, J., den Heijer, M., Buitelaar, J. K., & Oude Voshaar, R. C. (2012). Serum brain-derived neurotrophic factor: Determinants and relationship with depressive symptoms in a community population of middle-aged and elderly people. World Journal of Biological Psychiatry, 13(1), 39–47. https://doi.org/10.3109/15622975.2010.545187 Watanabe-Nakayama, T., Ono, K., Itami, M., Takahashi, R., Teplow, D. B., & Yamada, M. (2016). High-speed atomic force microscopy reveals structural dynamics of amyloid β1-42 aggregates. Proceedings of the National Academy of Sciences of the United States of America, 113(21), 5835–5840. https://doi.org/10.1073/pnas.1524807113 Orihashi, R., Imamura, Y., Kunitake, Y., & Mizoguchi, Y. (2024). Correlation between brain-derived neurotrophic factor and oxytocin in older adults. Archives of Gerontology and Geriatrics Plus, 1(4), 100059. https://doi.org/10.1016/j.aggp.2024.100059 Ziebell, M., Khalid, U., Klein, A. B., Aznar, S., Thomsen, G., Jensen, P., & Knudsen, G. M. (2012). Striatal dopamine transporter binding correlates with serum BDNF levels in patients with striatal dopaminergic neurodegeneration. Neurobiology of Aging, 33(2), 428.e1–428.e5. https://doi.org/10.1016/j.neurobiolaging.2010.11.010 Weinstein, G., Beiser, A. S., Choi, S. H., Preis, S. R., Chen, T. C., Vorgas, D., Au, R., Pikula, A., Wolf, P. A., DeStefano, A. L., Vasan, R. S., & Seshadri, S. (2014). Serum brain-derived neurotrophic factor and the risk for dementia: The Framingham Heart Study. JAMA Neurology, 71(1), 55–61. https://doi.org/10.1001/jamaneurol.2013.4781 Kasarpalkar, N. J., Kothari, S. T., & Dave, U. P. (2014). Brain-Derived Neurotrophic Factor in children with Autism Spectrum Disorder. Annals of Neurosciences, 21(4), 129. https://doi.org/10.5214/ans.0972.7531.210403 Leckie, R. L., Oberlin, L. E., Voss, M. W., Prakash, R. S., Szabo-Reed, A., Chaddock-Heyman, L., Phillips, S. M., Gothe, N. P., Mailey, E., Vieira-Potter, V. J., Martin, S. A., Pence, B. D., Lin, M., Parasuraman, R., Greenwood, P. M., Fryxell, K. J., Woods, J. A., McAuley, E., Kramer, A. F., . . . Erickson, K. I. (2014). BDNF mediates improvements in executive function following a 1-year exercise intervention. Frontiers in Human Neuroscience, 8, 985. https://doi.org/10.3389/fnhum.2014.00985 Hung, L., Tseng, W., Chao, H., Hung, M., & Wang, S. (2018). Effect of Acute Exercise Mode on Serum Brain-Derived Neurotrophic Factor (BDNF) and Task Switching Performance. Journal of Clinical Medicine, 7(10), 301. https://doi.org/10.3390/jcm7100301 Soavi, C., Marušič, U., Sanz, J. M., Morieri, M. L., Dalla Nora, E., Šimunič, B., Pišot, R., Zuliani, G., & Passaro, A. (2016). Age-related differences in plasma BDNF levels after prolonged bed rest. Journal of Applied Physiology (1985), 120(10), 1118–1123. https://doi.org/10.1152/japplphysiol.01111.2015 Molendijk, M. L., Haffmans, J. P., Bus, B. A., Spinhoven, P., Penninx, B. W., Prickaerts, J., Oude Voshaar, R. C., & Elzinga, B. M. (2012). Serum BDNF concentrations show strong seasonal variation and correlations with the amount of ambient sunlight. PLoS ONE, 7(11), e48046. https://doi.org/10.1371/journal.pone.0048046 Ng, T. K. S., Ho, C. S. H., Tam, W. W. S., Kua, E. H., & Ho, R. C. (2019). Decreased serum brain-derived neurotrophic factor (BDNF) levels in patients with Alzheimer's disease (AD): A systematic review and meta-analysis. International Journal of Molecular Sciences, 20(2), 257. https://doi.org/10.3390/ijms20020257 Lommatzsch, M., Zingler, D., Schuhbaeck, K., Schloetcke, K., Zingler, C., Schuff-Werner, P., & Virchow, J. C. (2005). The impact of age, weight, and gender on BDNF levels in human platelets and plasma. Neurobiology of Aging, 26(1), 115–123. https://doi.org/10.1016/j.neurobiolaging.2004.03.002 Maffioletti, E., Zanardini, R., Gennarelli, M., & Bocchio-Chiavetto, L. (2014). Influence of clotting duration on brain-derived neurotrophic factor (BDNF) dosage in serum. Biotechniques, 57(3), 111–114. https://doi.org/10.2144/000114204 Laske, C., Stellos, K., Hoffmann, N., Stransky, E., Straten, G., Eschweiler, G. W., & Leyhe, T. (2011). Higher BDNF serum levels predict slower cognitive decline in Alzheimer's disease patients. International Journal of Neuropsychopharmacology, 14(3), 399–404. https://doi.org/10.1017/S1461145710001008 Rahmani, F., Saghazadeh, A., Rahmani, M., Teixeira, A. L., Rezaei, N., Aghamollaii, V., & Ardebili, H. E. (2019). Plasma levels of brain-derived neurotrophic factor in patients with Parkinson’s disease: A systematic review and meta-analysis. Brain Research, 1704, 127–136. https://doi.org/10.1016/j.brainres.2018.10.006 Sen, S., Duman, R., & Sanacora, G. (2008). Serum brain-derived neurotrophic factor, depression, and antidepressant medications: Meta-analyses and implications. Biological Psychiatry, 64(6), 527–532. https://doi.org/10.1016/j.biopsych.2008.05.005 Mattson, M. P., Maudsley, S., & Martin, B. (2004). BDNF and 5-HT: A dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends in Neurosciences, 27(10), 589–594. https://doi.org/10.1016/j.tins.2004.08.001 Coelho, F. G., Gobbi, S., Andreatto, C. A., Corazza, D. I., Pedroso, R. V., & Santos-Galduróz, R. F. (2013). Physical exercise modulates peripheral levels of brain-derived neurotrophic factor (BDNF): A systematic review of experimental studies in the elderly. Archives of Gerontology and Geriatrics, 56(1), 10–15. https://doi.org/10.1016/j.archger.2012.06.003 Mattson, M. P., Maudsley, S., & Martin, B. (2004). A neural signaling triumvirate that influences ageing and age-related disease: Insulin/IGF-1, BDNF and serotonin. Ageing Research Reviews, 3(4), 445-464. https://doi.org/10.1016/j.arr.2004.08.001 Nemoto, K., Ohnishi, T., Mori, T., Moriguchi, Y., Hashimoto, R., Asada, T., & Kunugi, H. (2006). The Val66Met polymorphism of the brain-derived neurotrophic factor gene affects age-related brain morphology. Neuroscience Letters, 397(1-2), 25-29. https://doi.org/10.1016/j.neulet.2005.11.067 Kolla, B. P., Winham, S. J., Man-Choi Ho, A., Mansukhani, M. P., Loukianova, L. L., Pazdernik, V., & Karpyak, V. M. (2023). The Interaction Between Brain-Derived Neurotrophic Factor Levels and Alcohol Consumption, Sleep Disturbance and Sex-Hormones in Alcohol Use Disorders. Alcohol and Alcoholism (Oxford, Oxfordshire), 58(2), 209. https://doi.org/10.1093/alcalc/agad001 Goltz, A., Janowitz, D., Hannemann, A., Nauck, M., Hoffmann, J., Seyfart, T., Völzke, H., Terock, J., & Grabe, H. J. (2017). Association of brain-derived neurotrophic factor and vitamin D with depression and obesity: A population-based study. Neuropsychobiology, 76(4), 171–181. https://doi.org/10.1159/000489864 Polyakova, M., Stuke, K., Schuemberg, K., Mueller, K., Schoenknecht, P., & Schroeter, M. L. (2015). BDNF as a biomarker for successful treatment of mood disorders: A systematic & quantitative meta-analysis. Journal of Affective Disorders, 174, 432-440. https://doi.org/10.1016/j.jad.2014.11.044 Polyakova, M., Mueller, K., Arelin, K., Lampe, L., Rodriguez, F. S., Luck, T., Kratzsch, J., Hoffmann, T., Riedel-Heller, S., Villringer, A., Schoenknecht, P., & Schroeter, M. L. (2022). Increased Serum NSE and S100B Indicate Neuronal and Glial Alterations in Subjects Under 71 Years With Mild Neurocognitive Disorder/Mild Cognitive Impairment. Frontiers in Cellular Neuroscience, 16, 788150. https://doi.org/10.3389/fncel.2022.788150 Gorka, S. M., Teppen, T., Radoman, M., Phan, K. L., & Pandey, S. C. (2019). Human Plasma BDNF Is Associated With Amygdala-Prefrontal Cortex Functional Connectivity and Problem Drinking Behaviors. International Journal of Neuropsychopharmacology, 23(1), 1. https://doi.org/10.1093/ijnp/pyz057 Voss, M. W., Erickson, K. I., Prakash, R. S., Chaddock, L., Kim, J. S., Alves, H., Szabo, A., White, S. M., Wójcicki, T. R., Mailey, E. L., Olson, E. A., Gothe, N., Potter, V. V., Martin, S. A., Pence, B. D., Cook, M. D., Woods, J. A., McAuley, E., & Kramer, A. F. (2012). Neurobiological markers of exercise-related brain plasticity in older adults. Brain, Behavior, and Immunity, 28, 90. https://doi.org/10.1016/j.bbi.2012.10.021 Kim, J. M., Stewart, R., Bae, K. Y., Kim, S. W., Yang, S. J., Park, K. H., Shin, I. S., & Yoon, J. S. (2011). Role of BDNF val66met polymorphism on the association between physical activity and incident dementia. Neurobiology of Aging, 32(3), 551.e5–551.e12. https://doi.org/10.1016/j.neurobiolaging.2010.01.018 Ziegenhorn, A. A., Schulte-Herbrüggen, O., Danker-Hopfe, H., Malbranc, M., Hartung, H., Anders, D., Lang, U. E., Steinhagen-Thiessen, E., Schaub, R. T., & Hellweg, R. (2007). Serum neurotrophins—A study on the time course and influencing factors in a large old age sample. Neurobiology of Aging, 28(9), 1436-1445. https://doi.org/10.1016/j.neurobiolaging.2006.06.011 Kronenberg, G., Gertz, K., Schöner, J., Bertram, L., Liman, T., Steinhagen-Thiessen, E., Demuth, I., Endres, M., & Hellweg, R. (2021). BDNF serum concentrations in 2053 participants of the Berlin Aging Study II. Neurobiology of Aging, 101, 221-223. https://doi.org/10.1016/j.neurobiolaging.2021.01.020 Mueller, K., Arelin, K., Möller, H. E., Sacher, J., Kratzsch, J., Luck, T., Riedel-Heller, S., Villringer, A., & Schroeter, M. L. (2016). Serum BDNF correlates with connectivity in the (pre)motor hub in the aging human brain—A resting-state fMRI pilot study. Neurobiology of Aging, 38, 181-187. https://doi.org/10.1016/j.neurobiolaging.2015.11.003 Xu, H., Wang, J., Zhou, Y., Chen, D., Xiu, M., Wang, L., & Zhang, X. (2021). BDNF affects the mediating effect of negative symptoms on the relationship between age of onset and cognition in patients with chronic schizophrenia. Psychoneuroendocrinology, 125, 105121. https://doi.org/10.1016/j.psyneuen.2020.105121 Kwak, K.-P. (2015). Exercise training in very old adults with mild cognitive impairment: Improvements on BDNF peripheral levels and cognition. Alzheimer’s & Dementia, 11(7), P722. https://doi.org/10.1016/j.jalz.2015.06.160 Hwang, I. K., Yoo, K., Jung, B., Cho, J. H., Kim, D., Kang, T., Kwon, Y., Kim, Y., & Won, M. H. (2006). Correlations between neuronal loss, decrease of memory, and decrease expression of brain-derived neurotrophic factor in the gerbil hippocampus during normal aging. Experimental Neurology, 201(1), 75-83. https://doi.org/10.1016/j.expneurol.2006.02.129 Shpak, A. A., Guekht, A. B., Druzhkova, T. A., Kozlova, K. I., & Gulyaeva, N. V. (2018). Brain-derived neurotrophic factor in patients with primary open-angle glaucoma and age-related cataract. Current Eye Research, 43(2), 224–231. https://doi.org/10.1080/02713683.2017.1396617 Sherlala, R. A., Kammerer, C. M., Kuipers, A. L., Wojczynski, M. K., Ukraintseva, S. V., Feitosa, M. F., Mengel-From, J., Zmuda, J. M., & Minster, R. L. (2020). Relationship Between Serum IGF-1 and BMI Differs by Age. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 76(7), 1303. https://doi.org/10.1093/gerona/glaa282 He, J., Wu, Y., & Wang, Y. (2022). The independent association between age and serum cholesterol levels in patients with familial hypercholesterolemia. Discovery Medicine, 34(173), 171–180. PMID: 36535296. Tunagur, M. T., Aksu, H., Kurt Tunagur, E. M., & Yilmaz, M. (2024). Associations between neurological soft signs, executive functions, and brain-derived neurotrophic factor in boys with attention-deficit hyperactivity disorder. Indian Journal of Psychiatry, 66(5), 433–439. https://doi.org/10.4103/indianjpsychiatry.indianjpsychiatry_694_22 He, X., Song, J., Gao, H., Li, Z., Wang, X., Zeng, Q., Xiao, Y., Feng, J., Zhou, D., & Wang, G. (2023). Serum brain-derived neurotrophic factor and glial cell-derived neurotrophic factor in patients with first-episode depression at different ages. International Journal of Psychiatry in Clinical Practice, 27(2), 118–126. https://doi.org/10.1080/13651501.2022.2107938 Fujiwara, Y., Ihara, K., Hachisu, M., Suzuki, H., Kawai, H., Sakurai, R., Hirano, H., Chaves, P. H. M., Hashizume, M., & Obuchi, S. (2021). Higher serum brain-derived neurotrophic factor levels are associated with a lower risk of cognitive decline: A 2-year follow-up study in community-dwelling older adults. Frontiers in Behavioral Neuroscience, 15, 641608. https://doi.org/10.3389/fnbeh.2021.641608 Suwa, M., Kishimoto, H., Nofuji, Y., Nakano, H., Sasaki, H., Radak, Z., & Kumagai, S. (2006). Serum brain-derived neurotrophic factor level is increased and associated with obesity in newly diagnosed female patients with type 2 diabetes mellitus. Metabolism, 55(7), 852–857. https://doi.org/10.1016/j.metabol.2006.02.012 Shimada, H., Makizako, H., Doi, T., Yoshida, D., Tsutsumimoto, K., Anan, Y., Uemura, K., Lee, S., Park, H., & Suzuki, T. (2014). A Large, Cross-Sectional Observational Study of Serum BDNF, Cognitive Function, and Mild Cognitive Impairment in the Elderly. Frontiers in Aging Neuroscience, 6, 69. https://doi.org/10.3389/fnagi.2014.00069 Xu, H., Wang, J., Zhou, Y., Chen, D., Xiu, M., Wang, L., & Zhang, X. (2021). BDNF affects the mediating effect of negative symptoms on the relationship between age of onset and cognition in patients with chronic schizophrenia. Psychoneuroendocrinology, 125, 105121. https://doi.org/10.1016/j.psyneuen.2020.105121 Kaess, B. M., Preis, S. R., Lieb, W., Beiser, A. S., Yang, Q., Chen, T. C., Hengstenberg, C., Erdmann, J., Schunkert, H., Seshadri, S., & Vasan, R. S. (2015). Circulating Brain‐Derived Neurotrophic Factor Concentrations and the Risk of Cardiovascular Disease in the Community. Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease, 4(3), e001544. https://doi.org/10.1161/JAHA.114.001544 Ng, T. K. S., Ho, C. S. H., Tam, W. W. S., Kua, E. H., & Ho, R. C. (2019). Decreased serum brain-derived neurotrophic factor (BDNF) levels in patients with Alzheimer's disease (AD): A systematic review and meta-analysis. International Journal of Molecular Sciences, 20(2), 257. https://doi.org/10.3390/ijms20020257 Jiang, L., Zhang, H., Wang, C., Ming, F., Shi, X., & Yang, M. (2019). Serum level of brain-derived neurotrophic factor in Parkinson's disease: A meta-analysis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 88, 168-174. https://doi.org/10.1016/j.pnpbp.2018.07.010 Ornell, F., Hansen, F., Schuch, F. B., Pezzini Rebelatto, F., Tavares, A. L., Scherer, J. N., Valerio, A. G., Pechansky, F., Paim Kessler, F. H., & Von Diemen, L. (2018). Brain-derived neurotrophic factor in substance use disorders: A systematic review and meta-analysis. Drug and Alcohol Dependence, 193, 91-103. https://doi.org/10.1016/j.drugalcdep.2018.08.036 McPhee, G. M., Downey, L. A., & Stough, C. (2020). Neurotrophins as a reliable biomarker for brain function, structure and cognition: A systematic review and meta-analysis. Neurobiology of Learning and Memory, 175, 107298. https://doi.org/10.1016/j.nlm.2020.107298 Liang, Z., Zhang, Z., Qi, S., Yu, J., & Wei, Z. (2023). Effects of a Single Bout of Endurance Exercise on Brain-Derived Neurotrophic Factor in Humans: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Biology, 12(1), 126. https://doi.org/10.3390/biology12010126 Vyas, N., Wimberly, C. E., Beaman, M. M., Kaplan, S. J., Rasmussen, L. J., Wertz, J., Gifford, E. J., & Walsh, K. M. (2023). Systematic review and meta-analysis of the effect of adverse childhood experiences (ACEs) on brain-derived neurotrophic factor (BDNF) levels. Psychoneuroendocrinology, 151, 106071. https://doi.org/10.1016/j.psyneuen.2023.106071

META ANALYSIS-BMI Taha, M. A., Al-Maqati, T. N., Alnaam, Y. A., Alharbi, S. S., Khaneen, R., Almutairi, H., & Al-Harbi, M. (2022). The Association between Brain-Derived Neurotrophic Factor (BDNF) Protein Level and Body Mass Index. Medicina (Kaunas, Lithuania), 59(1), 99. https://doi.org/10.3390/medicina59010099 Roth, C. L., Elfers, C., Gebhardt, U., Müller, H. L., & Reinehr, T. (2013). Brain-derived neurotrophic factor and its relation to leptin in obese children before and after weight loss. Metabolism: clinical and experimental, 62(2), 226–234. https://doi.org/10.1016/j.metabol.2012.08.001 Yang, N., Levey, E., Gelaye, B., Zhong, Q. Y., Rondon, M. B., Sanchez, S. E., & Williams, M. A. (2017). Correlates of early pregnancy serum brain-derived neurotrophic factor in a Peruvian population. Archives of women's mental health, 20(6), 777–785. https://doi.org/10.1007/s00737-017-0759-0 Raharjo, S., Pranoto, A., Rejeki, P. S., Harisman, A. S. M., Pamungkas, Y. P., & Andiana, O. (2021). Negative Correlation between Serum Brain-derived Neurotrophic Factor Levels and Obesity Predictor Markers and Inflammation Levels in Females with Obesity. Open Access Macedonian Journal of Medical Sciences, 9(B), 1021–1026. https://doi.org/10.3889/oamjms.2021.6840 Suwa, M., Kishimoto, H., Nofuji, Y., Nakano, H., Sasaki, H., Radak, Z., & Kumagai, S. (2006). Serum brain-derived neurotrophic factor level is increased and associated with obesity in newly diagnosed female patients with type 2 diabetes mellitus. Metabolism: clinical and experimental, 55(7), 852–857. https://doi.org/10.1016/j.metabol.2006.02.012 Gender Difference in Association of Obesity with Serum BDNF in Chinese Patient with Chronic SchizophreniaYang, Fang et al. Biological Psychiatry, Volume 81, Issue 10, S400 Fonseca-Portilla, R., Krell-Roesch, J., Shaibi, G. Q., Caselli, R. J., Mandarino, L. J., Zhang, N., Hentz, J. G., Coletta, D. K., Dawit, S., & Geda, Y. E. (2019). Brain-Derived Neurotrophic Factor and Its Associations with Metabolism and Physical Activity in a Latino Sample. Metabolic Syndrome and Related Disorders, 17(2), 75. https://doi.org/10.1089/met.2018.0028 Chan, G., Rosic, T., Pasyk, S., Dehghan, M., & Samaan, Z. (2021). Exploring the Impact of Modifiable Factors on Serum BDNF in Psychiatric Patients and Community Controls. Neuropsychiatric Disease and Treatment, 17, 545. https://doi.org/10.2147/NDT.S295026 Araya, A. V., Orellana, X., & Espinoza, J. (2008). Evaluation of the effect of caloric restriction on serum BDNF in overweight and obese subjects: preliminary evidences. Endocrine, 33(3), 300–304. https://doi.org/10.1007/s12020-008-9090-x Saito, S., Watanabe, K., Hashimoto, E., & Saito, T. (2009). Low serum BDNF and food intake regulation: A possible new explanation of the pathophysiology of eating disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 33(2), 312-316. https://doi.org/10.1016/j.pnpbp.2008.12.009 Yang, F., Wang, K., Du, X., Deng, H., Wu, H. E., Yin, G., Ning, Y., Huang, X., Teixeira, A. L., de Quevedo, J., Soares, J. C., Li, X., Lang, X., & Zhang, X. Y. (2019). Sex difference in the association of body mass index and BDNF levels in Chinese patients with chronic schizophrenia. Psychopharmacology, 236(2), 753–762. https://doi.org/10.1007/s00213-018-5107-1 Nakazato, M., Hashimoto, K., Yoshimura, K., Hashimoto, T., Shimizu, E., & Iyo, M. (2006). No change between the serum brain-derived neurotrophic factor in female patients with anorexia nervosa before and after partial weight recovery. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 30(6), 1117-1121. https://doi.org/10.1016/j.pnpbp.2006.04.017 Alomari, M. A., Khabour, O. F., Alawneh, K., Alzoubi, K. H., & Maikano, A. B. (2020). The importance of physical fitness for the relationship of BDNF with obesity measures in young normal-weight adults. Heliyon, 6(3), e03490. https://doi.org/10.1016/j.heliyon.2020.e03490 Zhang, X. Y., Tan, Y. L., Zhou, D. F., Cao, L. Y., Wu, G. Y., Xu, Q., Shen, Y., Haile, C. N., Kosten, T. A., & Kosten, T. R. (2007). Serum BDNF levels and weight gain in schizophrenic patients on long-term treatment with antipsychotics. Journal of Psychiatric Research, 41(12), 997-1004. https://doi.org/10.1016/j.jpsychires.2006.08.007 Nurjono, M., Tay, Y. H., & Lee, J. (2014). The relationship between serum brain-derived neurotrophic factor (BDNF) and cardiometabolic indices in schizophrenia. Schizophrenia Research, 157(1-3), 244-248. https://doi.org/10.1016/j.schres.2014.05.024 Akbarian, S. A., Salehi-Abargouei, A., Pourmasoumi, M., Kelishadi, R., Nikpour, P., & Heidari-Beni, M. (2018). Association of Brain-derived neurotrophic factor gene polymorphisms with body mass index: A systematic review and meta-analysis. Advances in medical sciences, 63(1), 43–56. https://doi.org/10.1016/j.advms.2017.07.002 Boyuk, B., Degirmencioglu, S., Atalay, H., Guzel, S., Acar, A., Celebi, A., Ekizoglu, I., & Simsek, C. (2014). Relationship between levels of brain-derived neurotrophic factor and metabolic parameters in patients with type 2 diabetes mellitus. Journal of diabetes research, 2014, 978143. https://doi.org/10.1155/2014/978143 Nanri, A., Kochi, T., Eguchi, M., Kabe, I., & Mizoue, T. (2019). Demographic and lifestyle correlates of brain-derived neurotrophic factor in a working population: The Furukawa Nutrition and Health Study. Psychiatry research, 272, 581–586. https://doi.org/10.1016/j.psychres.2018.12.157 Sharmin, S., Rahman, M. M. U., Begum, H. A., Siddique, M. a. B., Uddin, M. M., Ferdous, J., Mutsuddy, P., & Yasmin, F. (2018). Influence of age and body mass index ( BMI) in estimation of glomerular filtration rate (GFR) in healthy adults. Bangladesh Journal of Nuclear Medicine, 19(1), 15–18. https://doi.org/10.3329/bjnm.v19i1.35560 Ranasinghe, C., Gamage, P., Katulanda, P., Andraweera, N., Thilakarathne, S., & Tharanga, P. (2013). Relationship between Body Mass Index (BMI) and body fat percentage, estimated by bioelectrical impedance, in a group of Sri Lankan adults: a cross sectional study. BMC public health, 13, 797. https://doi.org/10.1186/1471-2458-13-797 Müezzinler, A., Zaineddin, A. K., & Brenner, H. (2014). Body mass index and leukocyte telomere length in adults: a systematic review and meta-analysis. Obesity reviews : an official journal of the International Association for the Study of Obesity, 15(3), 192–201. https://doi.org/10.1111/obr.12126

META ANALYSIS-ACUTE EXERCISE Yentur, S. B., Ercan, Z., Deniz, G., Karatas, A., Gur, M., Alkan, G., & Koca, S. S. (2021). POS0576 EFFECTS OF ACUTE EXERCISE ON SERUM BDNF LEVEL IN PATIENTS WITH RHEUMATOID ARTHRITIS. Annals of the Rheumatic Diseases, 80(Suppl 1), 522.1-522. https://doi.org/10.1136/annrheumdis-2021-eular.3768 Arazi, H., Babaei, P., Moghimi, M., & Asadi, A. (2021). Acute effects of strength and endurance exercise on serum BDNF and IGF-1 levels in older men. BMC geriatrics, 21(1), 50. https://doi.org/10.1186/s12877-020-01937-6 Szuhany, K. L., & Otto, M. W. (2020). Assessing BDNF as a mediator of the effects of exercise on depression. Journal of psychiatric research, 123, 114–118. https://doi.org/10.1016/j.jpsychires.2020.02.003 Azevedo, L. V. D. S., Pereira, J. R., Silva Santos, R. M., Rocha, N. P., Teixeira, A. L., Christo, P. P., Santos, V. R., & Scalzo, P. L. (2022). Acute exercise increases BDNF serum levels in patients with Parkinson's disease regardless of depression or fatigue. European journal of sport science, 22(8), 1296–1303. https://doi.org/10.1080/17461391.2021.1922505 Chang, Y. K., Alderman, B. L., Chu, C. H., Wang, C. C., Song, T. F., & Chen, F. T. (2017). Acute exercise has a general facilitative effect on cognitive function: A combined ERP temporal dynamics and BDNF study. Psychophysiology, 54(2), 289–300. https://doi.org/10.1111/psyp.12784 Antunes, B. M., Rossi, F. E., Teixeira, A. M., & Lira, F. S. (2020). Short-time high-intensity exercise increases peripheral BDNF in a physical fitness-dependent way in healthy men. European journal of sport science, 20(1), 43–50. https://doi.org/10.1080/17461391.2019.1611929 Brunelli, A., Dimauro, I., Sgrò, P., Emerenziani, G. P., Magi, F., Baldari, C., Guidetti, L., Di Luigi, L., Parisi, P., & Caporossi, D. (2012). Acute exercise modulates BDNF and pro-BDNF protein content in immune cells. Medicine and science in sports and exercise, 44(10), 1871–1880. https://doi.org/10.1249/MSS.0b013e31825ab69b Fernández-Rodríguez, R., Álvarez-Bueno, C., Martínez-Ortega, I. A., Martínez-Vizcaíno, V., Mesas, A. E., & Notario-Pacheco, B. (2022). Immediate effect of high-intensity exercise on brain-derived neurotrophic factor in healthy young adults: A systematic review and meta-analysis. Journal of sport and health science, 11(3), 367–375. https://doi.org/10.1016/j.jshs.2021.08.004 Ceylan, H. İ., Silva, A. F., Ramirez-Campillo, R., & Murawska-Ciałowicz, E. (2024). Exploring the Effect of Acute and Regular Physical Exercise on Circulating Brain-Derived Neurotrophic Factor Levels in Individuals with Obesity: A Comprehensive Systematic Review and Meta-Analysis. Biology, 13(5), 323. https://doi.org/10.3390/biology13050323 Baladzhaeva, S., & Sarabia, J. (2024). Acute effect of aerobic exercise on brain-derived neurotrophic factor levels in patients with chronic heart failure. European Journal of Preventive Cardiology, 31(Supplement_1). https://doi.org/10.1093/eurjpc/zwae175.135 Muñoz Ospina, B., & Cadavid-Ruiz, N. (2024). The effect of aerobic exercise on serum brain-derived neurotrophic factor (BDNF) and executive function in college students. Mental Health and Physical Activity, 26, 100578. https://doi.org/10.1016/j.mhpa.2024.100578 Haunhorst, S., Bloch, W., Ringleb, M., Fennen, L., Wagner, H., Gabriel, H. H. W., & Puta, C. (2022). Acute effects of heavy resistance exercise on biomarkers of neuroendocrine-immune regulation in healthy adults: a systematic review. Exercise immunology review, 28, 36–52. Saucedo Marquez, C. M., Vanaudenaerde, B., Troosters, T., & Wenderoth, N. (2015). High-intensity interval training evokes larger serum BDNF levels compared with intense continuous exercise. Journal of applied physiology (Bethesda, Md. : 1985), 119(12), 1363–1373. https://doi.org/10.1152/japplphysiol.00126.2015 Meyer, J. D., Koltyn, K. F., Stegner, A. J., Kim, J. S., & Cook, D. B. (2016). Relationships between serum BDNF and the antidepressant effect of acute exercise in depressed women. Psychoneuroendocrinology, 74, 286–294. https://doi.org/10.1016/j.psyneuen.2016.09.022 Piotrowicz, Z., Chalimoniuk, M., Płoszczyca, K., Czuba, M., & Langfort, J. (2020). Exercise-Induced Elevated BDNF Level Does Not Prevent Cognitive Impairment Due to Acute Exposure to Moderate Hypoxia in Well-Trained Athletes. International journal of molecular sciences, 21(15), 5569. https://doi.org/10.3390/ijms21155569 Máderová, D., Krumpolec, P., Slobodová, L., Schön, M., Tirpáková, V., Kovaničová, Z., Klepochová, R., Vajda, M., Šutovský, S., Cvečka, J., Valkovič, L., Turčáni, P., Krššák, M., Sedliak, M., Tsai, C. L., Ukropcová, B., & Ukropec, J. (2019). Acute and regular exercise distinctly modulate serum, plasma and skeletal muscle BDNF in the elderly. Neuropeptides, 78, 101961. https://doi.org/10.1016/j.npep.2019.101961 Knaepen, K., Goekint, M., Heyman, E. M., & Meeusen, R. (2010). Neuroplasticity - exercise-induced response of peripheral brain-derived neurotrophic factor: a systematic review of experimental studies in human subjects. Sports medicine (Auckland, N.Z.), 40(9), 765–801. https://doi.org/10.2165/11534530-000000000-00000 Ferris, L. T., Williams, J. S., & Shen, C. L. (2007). The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Medicine and science in sports and exercise, 39(4), 728–734. https://doi.org/10.1249/mss.0b013e31802f04c7 Coelho, F. G., Gobbi, S., Andreatto, C. A., Corazza, D. I., Pedroso, R. V., & Santos-Galduróz, R. F. (2013). Physical exercise modulates peripheral levels of brain-derived neurotrophic factor (BDNF): a systematic review of experimental studies in the elderly. Archives of gerontology and geriatrics, 56(1), 10–15. https://doi.org/10.1016/j.archger.2012.06.003 Huang, T., Larsen, K. T., Ried-Larsen, M., Møller, N. C., & Andersen, L. B. (2014). The effects of physical activity and exercise on brain-derived neurotrophic factor in healthy humans: A review. Scandinavian journal of medicine & science in sports, 24(1), 1–10. https://doi.org/10.1111/sms.12069 Briken, S., Rosenkranz, S. C., Keminer, O., Patra, S., Ketels, G., Heesen, C., Hellweg, R., Pless, O., Schulz, K., & Gold, S. M. (2016). Effects of exercise on Irisin, BDNF and IL-6 serum levels in patients with progressive multiple sclerosis. Journal of Neuroimmunology, 299, 53-58. https://doi.org/10.1016/j.jneuroim.2016.08.007 Coelho, F. G., Vital, T. M., Stein, A. M., Arantes, F. J., Rueda, A. V., Camarini, R., Teodorov, E., & Santos-Galduróz, R. F. (2014). Acute aerobic exercise increases brain-derived neurotrophic factor levels in elderly with Alzheimer's disease. Journal of Alzheimer's disease : JAD, 39(2), 401–408. https://doi.org/10.3233/JAD-131073 Morais, V. A. C., Tourino, M. F. D. S., Almeida, A. C. S., Albuquerque, T. B. D., Linhares, R. C., Christo, P. P., Martinelli, P. M., & Scalzo, P. L. (2018). A single session of moderate intensity walking increases brain-derived neurotrophic factor (BDNF) in the chronic post-stroke patients. Topics in stroke rehabilitation, 25(1), 1–5. https://doi.org/10.1080/10749357.2017.1373500 Venezia, A. C., Hyer, M. M., Glasper, E. R., Roth, S. M., & Quinlan, E. M. (2020). Acute forced exercise increases Bdnf IV mRNA and reduces exploratory behavior in C57BL/6J mice. Genes, brain, and behavior, 19(5), e12617. https://doi.org/10.1111/gbb.12617 Zanardo, E., Quinto, G., Battista, F., Duregon, F., Vecchiato, M., Bergia, C., Erickson, K., Ermolao, A., & Neunhaeuserer, D. (2025). Acute effects of physical exercise on cognitive function and neurotrophins in patients with type 1 diabetes: A systematic review. Heliyon, 11(4), e42456. https://doi.org/10.1016/j.heliyon.2025.e42456 Schuch, F. B., da Silveira, L. E., de Zeni, T. C., da Silva, D. P., Wollenhaupt-Aguiar, B., Ferrari, P., Reischak-Oliveira, Á., & Kapczinski, F. (2015). Effects of a single bout of maximal aerobic exercise on BDNF in bipolar disorder: A gender-based response. Psychiatry research, 229(1-2), 57–62. https://doi.org/10.1016/j.psychres.2015.07.072 Håkansson, K., Ledreux, A., Daffner, K., Terjestam, Y., Bergman, P., Carlsson, R., Kivipelto, M., Winblad, B., Granholm, A. C., & Mohammed, A. K. (2017). BDNF Responses in Healthy Older Persons to 35 Minutes of Physical Exercise, Cognitive Training, and Mindfulness: Associations with Working Memory Function. Journal of Alzheimer's disease : JAD, 55(2), 645–657. https://doi.org/10.3233/JAD-160593 Jemni, M., Zaman, R., Carrick, F. R., Clarke, N. D., Marina, M., Bottoms, L., Matharoo, J. S., Ramsbottom, R., Hoffman, N., Groves, S. J., Gu, Y., & Konukman, F. (2023). Exercise improves depression through positive modulation of brain-derived neurotrophic factor (BDNF). A review based on 100 manuscripts over 20 years. Frontiers in physiology, 14, 1102526. https://doi.org/10.3389/fphys.2023.1102526 Tsai, C. L., Pan, C. Y., Tseng, Y. T., Chen, F. C., Chang, Y. C., & Wang, T. C. (2021). Acute effects of high-intensity interval training and moderate-intensity continuous exercise on BDNF and irisin levels and neurocognitive performance in late middle-aged and older adults. Behavioural brain research, 413, 113472. https://doi.org/10.1016/j.bbr.2021.113472 Dinoff, A., Herrmann, N., Swardfager, W., & Lanctôt, K. L. (2017). The effect of acute exercise on blood concentrations of brain-derived neurotrophic factor in healthy adults: a meta-analysis. The European journal of neuroscience, 46(1), 1635–1646. https://doi.org/10.1111/ejn.13603 Behrendt, T., Quisilima, J. I., Bielitzki, R., Behrens, M., Glazachev, O. S., Brigadski, T., Leßmann, V., & Schega, L. (2024). Brain-Derived neurotrophic factor and inflammatory biomarkers are unaffected by acute and chronic intermittent hypoxic-hyperoxic exposure in geriatric patients: a randomized controlled trial. Annals of medicine, 56(1), 2304650. https://doi.org/10.1080/07853890.2024.2304650 Hung, C. L., Tseng, J. W., Chao, H. H., Hung, T. M., & Wang, H. S. (2018). Effect of Acute Exercise Mode on Serum Brain-Derived Neurotrophic Factor (BDNF) and Task Switching Performance. Journal of clinical medicine, 7(10), 301. https://doi.org/10.3390/jcm7100301 de Poli, R. A. B., Lopes, V. H. F., Lira, F. S., Zagatto, A. M., Jimenez-Maldonado, A., & Antunes, B. M. (2021). Peripheral BDNF and psycho-behavioral aspects are positively modulated by high-intensity intermittent exercise and fitness in healthy women. Scientific reports, 11(1), 4113. https://doi.org/10.1038/s41598-021-83072-9 Church, D. D., Hoffman, J. R., Mangine, G. T., Jajtner, A. R., Townsend, J. R., Beyer, K. S., Wang, R., La Monica, M. B., Fukuda, D. H., & Stout, J. R. (2016). Comparison of high-intensity vs. high-volume resistance training on the BDNF response to exercise. Journal of applied physiology (Bethesda, Md. : 1985), 121(1), 123–128. https://doi.org/10.1152/japplphysiol.00233.2016 Piepmeier, A. T., & Etnier, J. L. (2015). Brain-derived neurotrophic factor (BDNF) as a potential mechanism of the effects of acute exercise on cognitive performance. Journal of Sport and Health Science, 4(1), 14-23. https://doi.org/10.1016/j.jshs.2014.11.001 Soya, H., Nakamura, T., Deocaris, C. C., Kimpara, A., Iimura, M., Fujikawa, T., Chang, H., McEwen, B. S., & Nishijima, T. (2007). BDNF induction with mild exercise in the rat hippocampus. Biochemical and Biophysical Research Communications, 358(4), 961-967. https://doi.org/10.1016/j.bbrc.2007.04.173 García-Suárez, P. C., Rentería, I., Moncada-Jiménez, J., Fry, A. C., & Jiménez-Maldonado, A. (2020). Acute Systemic Response Of BDNF, Lactate and Cortisol to Strenuous Exercise Modalities in Healthy Untrained Women. Dose-response : a publication of International Hormesis Society, 18(4), 1559325820970818. https://doi.org/10.1177/1559325820970818 Marston, K. J., Newton, M. J., Brown, B. M., Rainey-Smith, S. R., Bird, S., Martins, R. N., & Peiffer, J. J. (2017). Intense resistance exercise increases peripheral brain-derived neurotrophic factor. Journal of science and medicine in sport, 20(10), 899–903. https://doi.org/10.1016/j.jsams.2017.03.015 Shobeiri, P., Karimi, A., Momtazmanesh, S., Teixeira, A. L., Teunissen, C. E., van Wegen, E. E. H., Hirsch, M. A., Yekaninejad, M. S., & Rezaei, N. (2022). Exercise-induced increase in blood-based brain-derived neurotrophic factor (BDNF) in people with multiple sclerosis: A systematic review and meta-analysis of exercise intervention trials. PloS one, 17(3), e0264557. https://doi.org/10.1371/journal.pone.0264557 Kujach, S., Olek, R. A., Byun, K., Suwabe, K., Sitek, E. J., Ziemann, E., Laskowski, R., & Soya, H. (2020). Acute Sprint Interval Exercise Increases Both Cognitive Functions and Peripheral Neurotrophic Factors in Humans: The Possible Involvement of Lactate. Frontiers in neuroscience, 13, 1455. https://doi.org/10.3389/fnins.2019.01455 Tsai, C. L., Chen, F. C., Pan, C. Y., Wang, C. H., Huang, T. H., & Chen, T. C. (2014). Impact of acute aerobic exercise and cardiorespiratory fitness on visuospatial attention performance and serum BDNF levels. Psychoneuroendocrinology, 41, 121–131. https://doi.org/10.1016/j.psyneuen.2013.12.014 Seifert, T., Brassard, P., Wissenberg, M., Rasmussen, P., Nordby, P., Stallknecht, B., Adser, H., Jakobsen, A. H., Pilegaard, H., Nielsen, H. B., & Secher, N. H. (2010). Endurance training enhances BDNF release from the human brain. American journal of physiology. Regulatory, integrative and comparative physiology, 298(2), R372–R377. https://doi.org/10.1152/ajpregu.00525.2009 Linz, R., Puhlmann, L. M. C., Apostolakou, F., Mantzou, E., Papassotiriou, I., Chrousos, G. P., Engert, V., & Singer, T. (2019). Acute psychosocial stress increases serum BDNF levels: an antagonistic relation to cortisol but no group differences after mental training. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 44(10), 1797–1804. https://doi.org/10.1038/s41386-019-0391-y Dinoff, A., Herrmann, N., Swardfager, W., Liu, C. S., Sherman, C., Chan, S., & Lanctôt, K. L. (2016). The Effect of Exercise Training on Resting Concentrations of Peripheral Brain-Derived Neurotrophic Factor (BDNF): A Meta-Analysis. PloS one, 11(9), e0163037. https://doi.org/10.1371/journal.pone.0163037 Nofuji, Y., Suwa, M., Sasaki, H., Ichimiya, A., Nishichi, R., & Kumagai, S. (2012). Different circulating brain-derived neurotrophic factor responses to acute exercise between physically active and sedentary subjects. Journal of sports science & medicine, 11(1), 83–88. de Poli, R. A. B., Lopes, V. H. F., Lira, F. S., Zagatto, A. M., Jimenez-Maldonado, A., & Antunes, B. M. (2021). Peripheral BDNF and psycho-behavioral aspects are positively modulated by high-intensity intermittent exercise and fitness in healthy women. Scientific reports, 11(1), 4113. https://doi.org/10.1038/s41598-021-83072-9 Venezia, A. C., Quinlan, E., & Roth, S. M. (2017). A single bout of exercise increases hippocampal Bdnf: influence of chronic exercise and noradrenaline. Genes, brain, and behavior, 16(8), 800–811. https://doi.org/10.1111/gbb.12394 Baranowski, B. J., Mohammad, A., Finch, M. S., Brown, A., Dhaliwal, R., Marko, D. M., LeBlanc, P. J., McCormick, C. M., Fajardo, V. A., & MacPherson, R. E. K. (2023). Exercise training and BDNF injections alter amyloid precursor protein (APP) processing enzymes and improve cognition. Journal of applied physiology (Bethesda, Md. : 1985), 135(1), 121–135. https://doi.org/10.1152/japplphysiol.00114.2023 Heyman, E., Gamelin, F. X., Goekint, M., Piscitelli, F., Roelands, B., Leclair, E., Di Marzo, V., & Meeusen, R. (2012). Intense exercise increases circulating endocannabinoid and BDNF levels in humans--possible implications for reward and depression. Psychoneuroendocrinology, 37(6), 844–851. https://doi.org/10.1016/j.psyneuen.2011.09.017 Etnier, J. L., Wideman, L., Labban, J. D., Piepmeier, A. T., Pendleton, D. M., Dvorak, K. K., & Becofsky, K. (2016). The Effects of Acute Exercise on Memory and Brain-Derived Neurotrophic Factor (BDNF). Journal of sport & exercise psychology, 38(4), 331–340. https://doi.org/10.1123/jsep.2015-0335 Walsh, J. J., & Tschakovsky, M. E. (2018). Exercise and circulating BDNF: Mechanisms of release and implications for the design of exercise interventions. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme, 43(11), 1095–1104. https://doi.org/10.1139/apnm-2018-0192 Jørgensen, M. L. K., Kjølhede, T., Dalgas, U., & Hvid, L. G. (2019). Plasma brain-derived neurotrophic factor (BDNF) and sphingosine-1-phosphat (S1P) are NOT the main mediators of neuroprotection induced by resistance training in persons with multiple sclerosis-A randomized controlled trial. Multiple sclerosis and related disorders, 31, 106–111. https://doi.org/10.1016/j.msard.2019.03.029 Rojas Vega, S., Strüder, H. K., Vera Wahrmann, B., Schmidt, A., Bloch, W., & Hollmann, W. (2006). Acute BDNF and cortisol response to low intensity exercise and following ramp incremental exercise to exhaustion in humans. Brain research, 1121(1), 59–65. https://doi.org/10.1016/j.brainres.2006.08.105 Lukkahatai, N., Ong, I. L., Benjasirisan, C., & Saligan, L. N. (2025). Brain-Derived Neurotrophic Factor (BDNF) as a Marker of Physical Exercise or Activity Effectiveness in Fatigue, Pain, Depression, and Sleep Disturbances: A Scoping Review. Biomedicines, 13(2), 332. https://doi.org/10.3390/biomedicines13020332 Azevedo, K. P. M., de Oliveira, V. H., Medeiros, G. C. B. S., Mata, Á. N. S., García, D. Á., Martínez, D. G., Leitão, J. C., Knackfuss, M. I., & Piuvezam, G. (2020). The Effects of Exercise on BDNF Levels in Adolescents: A Systematic Review with Meta-Analysis. International journal of environmental research and public health, 17(17), 6056. https://doi.org/10.3390/ijerph17176056 Ruiz-González, D., Hernández-Martínez, A., Valenzuela, P. L., Morales, J. S., & Soriano-Maldonado, A. (2021). Effects of physical exercise on plasma brain-derived neurotrophic factor in neurodegenerative disorders: A systematic review and meta-analysis of randomized controlled trials. Neuroscience and biobehavioral reviews, 128, 394–405. https://doi.org/10.1016/j.neubiorev.2021.05.025 Ozan, M., Buzdağli, Y., Baygutalp, N. K., Yüce, N., Baygutalp, F., & Bakan, E. (2022). Serum BDNF and Selenium Levels in Elite Athletes Exposed to Blows. Medicina (Kaunas, Lithuania), 58(5), 608. https://doi.org/10.3390/medicina58050608 Ledreux, A., Håkansson, K., Carlsson, R., Kidane, M., Columbo, L., Terjestam, Y., Ryan, E., Tusch, E., Winblad, B., Daffner, K., Granholm, A. C., & Mohammed, A. K. H. (2019). Differential Effects of Physical Exercise, Cognitive Training, and Mindfulness Practice on Serum BDNF Levels in Healthy Older Adults: A Randomized Controlled Intervention Study. Journal of Alzheimer's disease : JAD, 71(4), 1245–1261. https://doi.org/10.3233/JAD-190756 Tsai, C. L., Chen, F. C., Pan, C. Y., Wang, C. H., Huang, T. H., & Chen, T. C. (2014). Impact of acute aerobic exercise and cardiorespiratory fitness on visuospatial attention performance and serum BDNF levels. Psychoneuroendocrinology, 41, 121–131. https://doi.org/10.1016/j.psyneuen.2013.12.014 Kucuk, H., Soyler, M., Ceylan, T., Ceylan, L., & Sahin, F. (2024). Effects of acute and chronic high-intensity interval training on serum irisin, BDNF and apelin levels in male soccer referees. Journal of Men S Health. https://doi.org/10.22514/jomh.2024.027 Piepmeier, A. T., Etnier, J. L., Wideman, L., Berry, N. T., Kincaid, Z., & Weaver, M. A. (2020). A preliminary investigation of acute exercise intensity on memory and BDNF isoform concentrations. European journal of sport science, 20(6), 819–830. https://doi.org/10.1080/17461391.2019.1660726 Piotrowicz, Z., Chalimoniuk, M., Płoszczyca K, K., Czuba, M., & Langfort, J. (2019). Acute normobaric hypoxia does not affect the simultaneous exercise-induced increase in circulating BDNF and GDNF in young healthy men: A feasibility study. PloS one, 14(10), e0224207. https://doi.org/10.1371/journal.pone.0224207 Tsai, C. L., Pan, C. Y., Chen, F. C., Wang, C. H., & Chou, F. Y. (2016). Effects of acute aerobic exercise on a task-switching protocol and brain-derived neurotrophic factor concentrations in young adults with different levels of cardiorespiratory fitness. Experimental physiology, 101(7), 836–850. https://doi.org/10.1113/EP085682 Du, X., Chen, W., Zhan, N., Bian, X., & Yu, W. (2021). The effects of low-intensity resistance training with or without blood flow restriction on serum BDNF, VEGF and perception in patients with post-stroke depression. Neuro endocrinology letters, 42(4), 229–235. Advance online publication. Hwang, J., Brothers, R. M., Castelli, D. M., Glowacki, E. M., Chen, Y. T., Salinas, M. M., Kim, J., Jung, Y., & Calvert, H. G. (2016). Acute high-intensity exercise-induced cognitive enhancement and brain-derived neurotrophic factor in young, healthy adults. Neuroscience letters, 630, 247–253. https://doi.org/10.1016/j.neulet.2016.07.033 Villamil-Parra, W., & Moscoso-Loaiza, L. (2024). Effects of physical exercise on Irisin and BDNF concentrations, and their relationship with cardiometabolic and mental health of individuals with Metabolic Syndrome: A Systematic Review. Experimental gerontology, 198, 112640. https://doi.org/10.1016/j.exger.2024.112640 Marinus, N., Hansen, D., Feys, P., Meesen, R., Timmermans, A., & Spildooren, J. (2019). The Impact of Different Types of Exercise Training on Peripheral Blood Brain-Derived Neurotrophic Factor Concentrations in Older Adults: A Meta-Analysis. Sports medicine (Auckland, N.Z.), 49(10), 1529–1546. https://doi.org/10.1007/s40279-019-01148-z Kargarfard, M., & Shariat, A. (2018). Aquatic exercise training increases serum brain-derived neurotrophic factor in patients with multiple sclerosis: A randomized controlled study. Annals of Physical and Rehabilitation Medicine, 61, e248. https://doi.org/10.1016/j.rehab.2018.05.576 Dinoff, A., Herrmann, N., Swardfager, W., & Lanctôt, K. L. (2017). The effect of acute exercise on blood concentrations of brain-derived neurotrophic factor in healthy adults: a meta-analysis. The European journal of neuroscience, 46(1), 1635–1646. https://doi.org/10.1111/ejn.13603 Roh, H. T., Cho, S. Y., & So, W. Y. (2017). Obesity promotes oxidative stress and exacerbates blood-brain barrier disruption after high-intensity exercise. Journal of sport and health science, 6(2), 225–230. https://doi.org/10.1016/j.jshs.2016.06.005 Figueiredo, C., Antunes, B. M., Giacon, T. R., Vanderlei, L. C. M., Campos, E. Z., Peres, F. P., Clark, N. W., Panissa, V. L. G., & Lira, F. S. (2019). Influence of Acute and Chronic High-Intensity Intermittent Aerobic Plus Strength Exercise on BDNF, Lipid and Autonomic Parameters. Journal of sports science & medicine, 18(2), 359–368. Dinoff, A., Herrmann, N., Swardfager, W., Gallagher, D., & Lanctôt, K. L. (2018). The effect of exercise on resting concentrations of peripheral brain-derived neurotrophic factor (BDNF) in major depressive disorder: A meta-analysis. Journal of psychiatric research, 105, 123–131. https://doi.org/10.1016/j.jpsychires.2018.08.021 Bayani, H. , fallah mohammadi, Z. and fazelzadeh, M. (2014). The Acute effect of aerobic and anaerobic exercise on serum levels of BDNF and cortisol in active men. Journal of Sports and Biomotor Sciences, 6(11), 49-57. Zarza-Rebollo, J. A., López-Isac, E., Rivera, M., Gómez-Hernández, L., Pérez-Gutiérrez, A. M., & Molina, E. (2024). The relationship between BDNF and physical activity on depression. Progress in neuro-psychopharmacology & biological psychiatry, 134, 111033. https://doi.org/10.1016/j.pnpbp.2024.111033 Babaei, P., Damirchi, A., Mehdipoor, M., & Tehrani, B. S. (2014). Long term habitual exercise is associated with lower resting level of serum BDNF. Neuroscience letters, 566, 304–308. https://doi.org/10.1016/j.neulet.2014.02.011 Gutiérrez-Vargas, R., Ugalde-Ramírez, A., Rico-González, M., Pino-Ortega, J., González-Hernández, J., & Rojas-Valverde, D. (2021). A Systematic Review of the Effects of Football Playing on Changes in Serum Brain-Derived Neurotrophic Factor Level. Applied Sciences, 11(24), 11828. https://doi.org/10.3390/app112411828 García-Suárez, P. C., Rentería, I., Plaisance, E. P., Moncada-Jiménez, J., & Jiménez-Maldonado, A. (2021). The effects of interval training on peripheral brain derived neurotrophic factor (BDNF) in young adults: a systematic review and meta-analysis. Scientific reports, 11(1), 8937. https://doi.org/10.1038/s41598-021-88496-x Borges, M., Junior, Tavares, L. F. J., Nagata, G. Y., Barroso, L. S. S., Fernandes, H. B., Souza-Gomes, A. F., Miranda, A. S., & Nunes-Silva, A. (2023). Impact of strength training intensity on brain-derived neurotrophic factor. International Journal of Sports Medicine, 45(02), 155–161. https://doi.org/10.1055/a-2197-1201

META ANALYSIS-SEX Heberlein, A., Lenz, B., Opfermann, B., Gröschl, M., Janke, E., Stange, K., Groh, A., Kornhuber, J., Frieling, H., Bleich, S., & Hillemacher, T. (2016). Association of testosterone and BDNF serum levels with craving during alcohol withdrawal. Alcohol, 54, 67-72. https://doi.org/10.1016/j.alcohol.2016.06.004 Stange, J. P. (2021). Testosterone and associated biological and psychological factors. Semantic Scholar. Retrieved from https://www.semanticscholar.org/paper/Testosterone-and-associated-biological-and-factors-Stange/3b09eabd3321ff52995af6602b662eeae76f5a17 Kolla, B. P., Winham, S. J., Ho, A. M., Mansukhani, M. P., Loukianova, L. L., Pazdernik, V., & Karpyak, V. M. (2023). The Interaction Between Brain-Derived Neurotrophic Factor Levels and Alcohol Consumption, Sleep Disturbance and Sex-Hormones in Alcohol Use Disorders. Alcohol and alcoholism (Oxford, Oxfordshire), 58(2), 209–215. https://doi.org/10.1093/alcalc/agad001 Czyzyk, A., Casarosa, E., Luisi, M., Podfigurna-Stopa, A., Meczekalski, B., & Genazzani, A. R. (2014). Brain-derived neurotrophic factor plasma levels in patients with Turner syndrome. Gynecological endocrinology : the official journal of the International Society of Gynecological Endocrinology, 30(3), 245–249. https://doi.org/10.3109/09513590.2013.871513

Math+Statistics Resources [1] Hedges, L. V., & Olkin, I. (1985). Statistical Methods for Meta-Analysis. Academic Press. This book introduces key statistical methods used in meta-analysis, including how to combine results from different studies. It’s widely used in research to calculate overall effect sizes and understand study variability. [2] Fisher, R. A. (1921). On the ”probable error” of a coefficient of correlation deduced from a small sample. Metron, 1 (4), 3–32. In this paper, Fisher explains how to adjust correlation results when the sample size is small. He developed a method (now called Fisher’s z-transformation) that helps make correlations more accurate in statistical analysis.

As our research continues to progress, updates will be made to the graphs and information provided on this page. 

For a full list of all the studies this meta-analysis was conducted with please refer to the "Resources" tab

bottom of page